

Harnessing Machine Learning to Forecast Inpatient Care Intensity in NHS Lothian

Konstantin Georgiev

BHF Centre for Cardiovascular Science
University of Edinburgh

Challenges for Unscheduled Care Systems

- ~40% of ED attendances comprise of older patients with multiple long-term conditions (MLTC), and functional decline.1
- Overnight stays in the ED could reduce the likelihood of survival to discharge by ~5%.2
- Our current models in urgent care often fail to detect risks between older patients within the 72-hour window after admission.
- **ML-driven** approaches could be used to identify likely care needs early after hospitalisation.

Extended waits in A&E across Scotland

Source: Public Health Scotland

Previous Work

- EHR systems now capture multidimensional indicators of frailty,³ affecting healthcare needs in hospital.
- Each contact can be timestamped and recorded for measuring inpatient activity.
- In previous work, we showed associations between healthcare contact frequency and multimorbidity in NHS Lothian urgent care.⁴

Average health contacts recorded in urgent care by multimorbidity and 30-day readmission

No MM: <2 long-term conditions

Simple MM: 2-3 long-term conditions

High-count MM: ≥4 long-term conditions

Physical-mental MM: >1 physical + >1 mental condition

Study design: Data Collection and Prediction **Timepoints** Five timepoints covering the critical window after In-hospital endpoint and **ED** attendance Care needs prediction Follow-up until: 48 hrs **72 hrs** 24 hrs Home discharge Hospital Post-Post-Post- Death **ED Arrival** admission admission admission admission • Transfer to institution Hospital Pre-admission Post-admission Pre-ED discharge features features features **Lothian Accreditation & ED** features **Care Assurance** post-arrival Primary care **Standards Framework** Secondary care ED metadata Demographics Outpatient **77** GP-coded attendances diagnoses Hospital-coded diagnoses **Prescribing** Mode of arrival Nursing risk Inpatient Triage code assessments attendances Lab testing Lab testing

Patient Characteristics

Intensity quintiles based on # nursing/rehab contacts

		Level of healthcare need					
	All (n=98,242)	Very Low	Low	Medium	Medium-High	High	р
		(n=9,687)	(n=26,994)	(n=21,841)	(n=19,981)	(n=19,739)	
Age (mean, SD)	72 <u>±</u> 12	68 <u>±</u> 12	69 <u>+</u> 12	71 <u>±</u> 12	73 <u>±</u> 12	71 <u>±</u> 11	<0.001
Women (n, %)	50,214 (51%)	4,863 (50%)	13,246 (49%)	10,695 (49%)	10,423 (52%)	10,987 (56%)	<0.001
Health questionnaire results							
Delirium: 4AT Score (≥4, at risk)	6,540 (7%)	132 (1%)	675 (3%)	1,084 (5%)	1,797 (9%)	2,852 (14%)	<0.001
Malnutrition: MUST Score (\geq 2, at high risk)	5,911 (6%)	119 (1%)	650 (2%)	842 (4%)	1,377 (7%)	2,923 (15%)	<0.001
Pressure ulcer: Waterlow score (≥10, at risk)	17,023 (17%)	801 (8%)	2,660 (10%)	3,181 (15%)	4,323 (22%)	6,058 (31%)	<0.001
Fall event within 6 months of admission	16,043 (16%)	350 (4%)	2,149 (8%)	2,721 (13%)	4,052 (20%)	6,771 (34%)	<0.001
Walking dependence	17,074 (21%)	1,412 (15%)	6,341 (24%)	5,434 (25%)	4,338 (22%)	3,105 (16%)	<0.001
Bathing dependence	20,160 (21%)	1,473 (15%)	6,816 (25%)	5,727 (26%)	4,401 (22%)	2,428 (12%)	<0.001
Swallowing difficulties	1,719 (2%)	26 (<1%)	136 (1%)	175 (1%)	333 (2%)	1,049 (5%)	<0.001

Nursing risk indicators can be linked to high healthcare needs

Performance: Inpatient Care Intensity

Measure	Description	Interpretation	
MAE (Mean Absolute Error)	Measure of average error size	lower=better (off by ~1 contact per patient)	
cMAPE (Conditional Mean Absolute Percentage Error)	Average magnitude of error deviation	lower=better (50% = random chance, 35% = moderate)	
BACC (Balanced accuracy)	Weighted average accuracy over 5 intensity quintiles	higher=better (0.25 = random chance)	
CKS (Cohen's Kappa Score) ⁵	Qualitative measure of reliability over 5 intensity quintiles	Higher=better (<0.2 = poor agreement, 0.4-0.6 = moderate)	

Performance: Hospital Outcomes

Moderate to great discrimination (ROC-AUC between 0.71-0.89)

Excellent detection for GM-related admissions (ROC-AUC=0.89 at hospitalisation)

More limited for ICU admissions (ROC-AUC=0.71-0.78)

Improved detection rate over time (PR-AUC), excl.
GM admission

Captured 9 out of 10 patients within top 10% of risk that required any future rehabilitation

Important Predictors of Care Intensity

Summary

- ML-driven approaches can predict in-hospital healthcare needs and requirements for specialist services in urgent care with **moderate to excellent** quality.
- Markers of geriatric health and frailty in routine data can be used to explain intensity of inpatient care.
- Some predictions are likely confounded by serious acute events (e.g. myocardial infarction) or death.
- Need to capture a greater array of providers for a **holistic** representation of delivered healthcare (e.g. medical doctors, pharmacists, pain management team).
- In the future, forecasting models for **healthcare intensity** could feed insights to other risk assessment tools to support precise '**front-door**' approaches and **resource allocation** NHS Lothian.

Acknowledgments

UoE PhD supervision team:

- Dr Atul Anand
- Prof Susan D Shenkin
- Prof Joanne McPeake
- Prof Jacques Fleuriot

Data collaborators:

DataLoch (Data-Driven Innovation Initiative)

Funding body:

➤ Sir Jules Thorn Charitable Trust (PhD award, 21/01PhD)

Thank you!

Contact:

K.S.Georgiev@sms.ed.ac.uk

University of Edinburgh
BHF Centre for Cardiovascular Science